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stack, it shows that extremum seeking is a viable method to control the air flow rate. The algorithms do
not rely on knowledge of system modeling parameters, and adapt to changes in those parameters that
occur due to disturbances and degradation. An additional penalty on the ohmic resistance is proposed
for the objective function to increase the life of the cell.

© 2008 Elsevier B.V. All rights reserved.
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athode air flow rate control

. Introduction

The control and management of air flow, which provides oxy-
en to a polymer electrolyte fuel cell, has been the focus of many
tudies. The literature includes dynamic fuel cell models that
ncorporate feedforward and feedback air control schemes [1,2], a
onlinear reference load governor [3] to avoid oxygen starvation,
nd optimization methods to maximize the voltage by control-
ing the inlet air pressure and stoichiometry taking into account
he relative air humidity [4]. Reference [5] uses a multivariable

odel-based control structure to control cathode pressure and oxy-
en flow rate. Reference [6] proposes a predictive control strategy
sing dynamic matrix control (DMC), which models the process
sing step responses. Reference [7] regulates the air and hydrogen
ow rates using a multivariable transfer function matrix model.
hese control strategies stabilize a predetermined air stoichiometry
hich may or may not be the optimal operating condition. Another
isadvantage of these methods is that they require knowledge of
ystem parameters, which must be either measured offline or esti-
ated. However, in practice, parameters vary over time because of

erformance degradation, clogging of air filters, and contamination
f gas diffusion layers.
This paper proposes an air flow control strategy that optimizes
et power in real-time without relying on system parameters.
he proposed extremum seeking algorithm manipulates the air
ow rate into the cathode and measures the net output power,

∗ Corresponding author. Tel.: +1 518 861 5016; fax: +1 518 276 6261.
E-mail addresses: orourkej@strose.edu (J. O’Rourke), arcak@eecs.berkeley.edu

M. Arcak), Manikandan Ramani@plugpower.com (M. Ramani).

378-7753/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2008.11.060
which is the stack power minus the power consumed by the air
blower/compressor. In a low temperature PEMFC system, as the air
flow rate is increased the net power increases up to a point where
parasitic losses (blower/compressor power) cause a decline. This
defines a function between air flow rate and net power that exhibits
a peak. To locate the peak of this air flow rate-net power curve, our
algorithm starts the air flow at a nominal rate, makes a small step
change and measures the net power. The next step change to the
air flow rate is based on the net power gradient, which is estimated
using finite difference methods without relying on the knowledge
of the air flow-net power curve. The algorithm continues adjusting
the air flow rate until the estimated gradient is below a threshold.
Extremum seeking in various forms has long been used by control
engineers in numerous applications [8–11].

After successfully demonstrating the basic extremum seeking
algorithms, we proceed to propose several variants: The first vari-
ant includes a regulating valve for the air outlet manifold as a second
control input as suggested in [6]. The second variant interrupts the
algorithm when significant changes in the load current occur, and
resets the airflow to avoid oxygen starvation and to reduce conver-
gence time.

During the optimization as air flow step changes are made, the
net power initially has an inverse response. The blower or compres-
sor reacts much faster than the stack voltage which causes an initial
drop or spike in the net power. Since this behavior is a concern for
the power conditioning modules, we propose a third variant of our

design in which a step change is replaced with a slower ramping
of the air flow rate, thus reducing the magnitude of the net power
inverse response.

A disadvantage of existing air control schemes is that they con-
sider only the short-term effect of the air flow on the stack power.

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:orourkej@strose.edu
mailto:arcak@eecs.berkeley.edu
mailto:Manikandan_Ramani@plugpower.com
dx.doi.org/10.1016/j.jpowsour.2008.11.060
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2.2. Refined steepest ascent method

The coarse steepest ascent algorithm used a forward difference
formula to estimate the gradient. To improve the accuracy of the
J. O’Rourke et al. / Journal of P

n the long term, however, increasing the air flow to maximize the
et power may compromise the durability of the cell by causing
rying of the membrane, which then leads to hot spots and faster
eterioration. To trade short-term net power with durability, in
he fourth variant of our design we modify the objective function
y including a penalty on high resistance values which indicate
embrane drying.
The rest of the paper is organized as follows: Section 2 explains

he extremum seeking algorithms used and demonstrates their
erformance with a fuel cell simulation model developed by Ste-

anopoulou and coworkers [1,2,12]. Section 3 presents experimental
esults performed at Plug Power. Due to limited availability of
he testing facilities, some of the variants of our algorithms were
nvestigated using only simulations. Section 4 presents simula-
ion results using two manipulated inputs. Section 5 appends the
xtremum seeking algorithms to account for changes in the cur-
ent load. Section 6 alleviates the inverse response of the net power
y replacing step changes with tapered input profiles. Section 7
emonstrates the effect of air flow on resistance, derives a penalty
unction for our objective function, and then presents simulation
esults. Section 8 gives the conclusions.

. Extremum seeking algorithm

The objective of the extremum seeking algorithm is to manipu-
ate the air flow rate into the cathode to maximize net power. The
et power is defined as the power produced by the fuel cell stack
inus the power consumed by the air blower or compressor. The

lgorithms developed in this section consist of a single measured
lant parameter, and a single manipulated input. All other operat-

ng parameters are considered fixed during the optimization. In the
ext step, the air flow rate is determined by the gradient of the net
ower, which is estimated by finite difference methods [13].

.1. Coarse steepest ascent method

The ‘coarse’ steepest ascent optimization algorithm allows the
tep size to vary in accordance with an estimate of the gradient
13]. An initial step increase to the manipulated input u is made,
he system is run until it reaches steady state, and the output y
s measured. The next step change to the compressor is calculated
sing Eq. (1), where G is a tuning gain factor:

(k + 1) − u(k) = G
y(k) − y(k − 1)
u(k) − u(k − 1)

(1)

The algorithm stops when the change in net power is sufficiently
lose to zero, as determined by a user-defined deadband.

To examine the performance of our algorithms we use an exist-
ng dynamic fuel cell Simulink system model developed in [1,2,12].
he fuel cell system Simulink model incorporates auxiliary com-
onents, specifically an Allied Signal compressor, manifolds, an air
ooler and a humidifier. A characteristic map is used to model the
ir compressor. The fuel cell stack model is comprised of four sub-
odels: stack voltage, cathode flow, anode flow and membrane

ydration. The stack voltage is a function of the cell temperature,
ir pressure, oxygen and hydrogen partial pressures, and membrane
umidity. The number of cells is set to 381 with active cell area of
80 cm2. The air is supplied by a compressor and the flow rate is
ontrolled by the voltage applied to the compressor. The compres-
or voltage is our manipulated input. The output is the calculated
et power, which is the stack voltage multiplied by the current
oad minus the power consumed by the compressor. Prior to run-
ing our optimization routines, several different air flow rates and
heir corresponding net powers are plotted in Fig. 1. The simulations
how that at the given operating conditions the net power reaches
maximum of 27,922 W at an air stoichiometry of 2.5. The cathode
Fig. 1. Net power as a function of cathode air flow rate shows a peak net power of
27,922 W at an air stoichiometry of 2.5.

pressure increases as the air flow rate increases, causing stack volt-
age to increase. However at air flow rates above a stoichiometry of
2.5 the net power decreases because the power consumed by the
compressor is increasing more than the gain in stack power.

Fig. 2 displays the results of the coarse steepest ascent algorithm
with a gain G = 0.5 and a deadband of 1.0 W. In each step, we let the
system run for two seconds to reach steady state. It takes 4 steps
thus 8 s, starting from a cathode stoichiometry of 1.8 to reach the
maximum net power at a cathode stoichiometry of 2.5. The spikes
in net power at each step change in air flow rate are caused by the
immediate power consumption of the compressor. The stack power
takes longer to reach its new value.
Fig. 2. Coarse steepest ascent algorithm with gain = 0.5 and deadband = 1.0 W, con-
verges in 10 s.
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cell is 262 cm2. The reactant flows to the stack are hydrogen and
air. The anode and cathode gas streams are 100% humidified with
external humidifiers. The coolant, air and hydrogen into the stack
are heated with external heaters and the temperature of the gas
ig. 3. Refined steepest ascent algorithm with various dither values. A large range
f dither sizes yield comparable performance.

radient estimation, we now use a central difference formula and
ntroduce an independent dither parameter h. Each step now con-
ists of two dither periods where the input is u+(k) = u(k) + h and
−(k) = u(k) − h. The resulting net power values y+(k) and y−(k) are
ecorded, and the step change for u is determined from:

(k + 1) − u(k) = G
y+(k) − y−(k)

2h
(2)

he routine continues until the difference in net power is within
he deadband.

Simulation results are shown in Fig. 3 for a gain of 1.0, deadband
f 1.0 W and three different dithers; 0.05, 0.10 and 5.0 V. The refined
teepest algorithm performs the same for dithers in the range of
.10–5.0 V, converging to the maximum net power within 14 s. At
low dither of 0.01 volts, the algorithm reaches the maximum net
ower but convergence takes longer.

.3. Newton-type method

Next a Newton-type algorithm is investigated. The Newton algo-
ithm includes using finite differences to estimate the Hessian
atrix. An estimate of the second derivative is included in the step

djustment to the input:

(k + 1) − u(k) = −G
y′

y′′

′ = y+(k) − y−(k)
2h

′′ =
y+(k)−y(k)

h − y(k)−y−(k)
h

h
(3)

Simulation results are shown in Fig. 4, with a dither of 0.50 V,
deadband of 1.0 W and gains of 1.0 and 15. The gain of 1.0 takes
8 s to converge to an air stoichiometry of 2.45 and a net power of

7,921 W. A gain of 15 results in convergence within 14 s. A higher
ain is needed for the Newton-type algorithm. The Newton-type
lgorithm finds the optimal with two-step changes to the air flow
ate. However the time it takes to make these step changes is longer
han the coarse steepest ascent algorithm because the Newton
Fig. 4. Newton-type algorithm with gains of 1 and 15. A higher gain is needed to
reduce convergence time.

method requires an estimate for the second derivative. Simulation
results do not indicate any performance improvement with Newton
method.

3. Experimental

Testing was performed in a laboratory at Plug Power Inc. in
Latham, NY. The experiments involve an eight-cell stack with a 3 M
commercially available membrane electrode assembly. The mem-
brane thickness is 1.1 mils (0.002794 cm) and the active area of the
Fig. 5. Experimental results for an open loop set change in air flow rate. Stack voltage
reaches steady state after 23 s.
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nto the cathode and anode are controlled to the same temperature
s the coolant inlet temperature of 55 ◦C.

National Instrument’s SCXI and LabVIEW provide data logging,
ser interface, and signal conditioning for the pressure, tempera-
ure, voltage, current and flow rate sensors. A HC Power Inc. load
ank supplies the current load to the stack. The air to the stack is
upplied by shop air and does not use an individual blower. To esti-
ate the power loss that a blower would introduce, the fluid power

ormula is used (the product of the air inlet measured pressure and
ommanded flow rate).

To evaluate the performance of the extremum seeking algo-
ithms, it is necessary to understand the behavior of net power as
function of air flow rates. A step change is made to the air flow

etpoint and the air flow and the stack voltage are measured. All
ther parameters are held constant. The hydrogen flow rate is fixed
t a stoichiometry of 1.9, current density is set to 0.4 A cm−2, tem-

◦
erature of the cell and inlet reactants are controlled to 55 C and
ir and hydrogen are 100% externally humidified. Fig. 5 displays the
esponse to the step change. Since the air is not supplied by a blower
r a compressor there is no large spike in consumption of power
hen the air flow setpoint is increased. The mass flow air control

Fig. 6. Experimental data net power as a function of air flow ra
Sources 187 (2009) 422–430 425

valve allows the air to reach setpoint in 13 s without any overshoot.
The stack voltage rises slightly above its steady state point when
the air flow rate is initially increased and then drops to its steady
state after 23 s. This experiment indicates that we need to allow a
significant settling time before taking measurements. 30 s is used
throughout the lab experiments.

Fig. 6 displays the net power of the eight-cell stack as a function
of air flow rate for both current loads of 0.4 and 0.7 A cm−2. The net
power measurements have a considerable amount of scatter at each
flow rate which is caused by the fluctuation in stack voltage. This
scatter adds to the difficulty of the extremum seeking algorithm
finding the maximum.

First the coarse steepest ascent algorithm is implemented. The
gain is 10, the deadband is 0.25 W and the initial change in air flow
rate is 1.0 slm. All other parameters are kept the same as in the
prior step test. Fig. 7 displays the results. The optimization begins

at an air flow of 4.0 stoichiometry and after 240 s (7-step changes
to the air flow) the algorithm reaches a net power of 600 W at an
air flow of 2.6 stoichiometry. The net power is slightly higher than
shown in Fig. 6 (0.4 A cm−2). This supports our argument that a
fuel cell stack has an uncertain power map and there is a need

tes. Large scatter in measurements at fixed air flow rate.
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ig. 7. Experimental results of the coarse steepest ascent algorithm. It takes 7-step
hanges to air flow rate to reach maximum net power.

or an extremum seeking algorithm to find the optimal air flow
ate.

The test is repeated by starting at a lower air flow rate of 1.7
toichiometry. Fig. 8 displays the results. The algorithm took 337 s
o reach a net power of 599 W at an air stoichiometry of 3.00. The
urrent load on the stack is increased to 0.7 A cm−2 and the algo-
ithm is tested again. After 731 s the algorithm finds a maximum
et power of 910 W at 2.8 air stoichiometry. The test is immedi-
tely repeated to see if the algorithm will find the same optimal air
ow rate. The algorithm converges at a slightly higher air flow rate

f 2.9 stoichiometry with a net power of 906. If we test lower gains
f 2 and 3 the algorithm converges in half the time but results in
ower net power (892 and 889 W) at much higher air stoichiome-
ry of 3.6 and 3.5. Fig. 6 demonstrates that at a fixed air flow rate,

ig. 8. Experimental results of the coarse steepest ascent algorithm starting at low
ir flow rate.
Fig. 9. Experimental results for refined steepest ascent algorithm at different gains.
Higher gain yields faster convergence.

the net power has a range of 8 W, because of this large scatter (due
to the behavior of the voltage measurements) the optimal air flow
rate could be between 2.3 and 3.0 stoichiometry. When we reduced
the gain to 2 or 3 the coarse steepest ascent did not converge to the
global maximum.

To improve robustness and reduce the effects of the voltage mea-
surement scatter, the refined steepest ascent algorithm is used and
a voltage averaging filter is introduced. After the system runs for
30 s the voltage is measured for three consecutive time steps and
the average of these is used in the algorithm.

Fig. 9 displays the results of the steepest ascent algorithm using
the central difference formula for a load of 0.4 A cm−2, dither of
3 slm, deadband of 0.75, starting stoichiometry of 4.0 and three
different gains. At gains of 5, 10 and 15 the algorithm converges
in 318, 318 and 505 s respectively. The air flows converge to val-
ues between 2.7 and 3.1 stoichiometry and the corresponding net
powers range from 592 to 597. At a gain of 10 and 15 three itera-
tions are needed to reach its optimal air flow rate. Though it takes
only three iterations, the added time to dither and filter makes the
convergence time slightly longer than the simple algorithm. The
advantage of using the filter and the central difference formula is
improved repeatability.

The next test is performed at a gain of 10 and starting the opti-
mization at a low air flow rate of 1.7 stoichiometry. Fig. 10 shows
the comparison between starting at a low and high air flow rate.
The algorithm reaches an optimal air flow rate of 40 slm (2.87 stoi-
chiometry) with a net power of 596 W if optimization starts at a low
air flow rate. It reaches an optimal of 42 slm (2.99 stoichiometry)
with a net power of 591 W at a high starting air flow rate.

The next test allows the algorithm to find the optimal air flow
rate at different operating points. Fig. 11 displays the results. The
test starts at a current load of 0.7 A cm−2 (183 A) and a net power of
881 W. After 330 s the algorithm adjusts the air flow and finds the
optimum at 899 W. The current load is decreased to 0.50 A cm−2

(133 A) and the net power starts at 700 W. The algorithm is acti-

vated and results in a net power of 717 W. The load is increased to
0.55 A cm−2 and the net power is 765 W. The algorithm runs and
manipulates air flow so the net power is increased to 769 W. The
results show that the algorithm does find the maximum net power
at each operating point. It demonstrates that if the air flow is in
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Fig. 10. Experimental results for refined steepest ascent algorithm at different start-
ing flow rates.
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ig. 11. Experimental results for refined steepest ascent algorithm at varying current
oads.

he range of the optimal point, as in the case of going from a load
f 0.5–0.55 A cm−2, the algorithm slightly manipulates the air flow
nd increases the output by more than 4 W.

. Two manipulated inputs

Our extremum seeking algorithms are now extended from a sin-
le input-single output model to a two input-single output system.
s proposed in [6], we take the second input to be a regulating valve

hat controls the cross sectional area of the air outlet manifold.
hanges in the outlet area change the air flow rate and influence
erformance. Increasing the cross sectional area of the outlet man-
fold allows a greater air flow rate, thus increasing the compressor
ower consumption. However, it also increases the oxygen partial
ressure, which increases the stack power. At larger cross sectional
reas, increasing the area causes a slight drop in oxygen partial
ressure minimally decreasing stack power.
Fig. 12. Simulations for various air flow rates and air outlet manifold cross sectional
area.

Manipulating the cross sectional area of the air outlet manifold
in addition to the voltage to the compressor results in a maximum
net power greater than when manipulating one input. Fig. 12 dis-
plays simulations results of the net power at various combinations
of voltage to the air compressor and cross sectional areas for a
current load of 0.4 and 0.1 A cm−2. The area near the maximum
net power is flat, indicating that various configurations result in
relatively similar net power.

We modify our extremum seeking algorithm to manipulate the
two inputs concurrently: Each step now consists of four dither
periods where, in the first two, voltage to the compressor is
u1

+(k) = u1(k) + h1 and u1
−(k) = u1(k) − h1, with corresponding net

power values y1
+(k) and y1

−(k). In the third and fourth dither peri-
ods u1(k) is kept constant and the air outlet cross sectional area is
modified to u2

+(k) = u2(k) + h2 and u2
−(k) = u2(k) − h2, with corre-

sponding net power values y2
+(k) and y2

−(k). The update law is
U(k + 1) = U(k) = [Y+(k) − Y−(k)]

⎡
⎣

G1

2h1
0

0
G2

2h2

⎤
⎦ (4)
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of the largest change in input voltage results in an 11% inverse mag-
nitude response for the step input and a 6% inverse response for the
ramp input profile.
Fig. 13. Extremum seeking that manipulates two inputs concurrently.

here G1 and G2 are the tuning gains, and

U(k) = [u1(k), u2(k)]
Y (k) = [y1(k), y2(k)]
Y+(k) = [y+

1 (k), y+
2 (k)]

Y−(k) = [y−
1 (k), y−

2 (k)]

Simulations are performed at a current load of 0.4 A cm−2. It
akes 102 s to converge to a net power of 27,951 W, as shown in
ig. 13. Including a regulating valve to adjust the cross sectional
rea of the air outlet manifold slightly increases the maximum net
ower attained, but convergence time is increased.

. Adapting to changes in the current load

So far we have presented optimization methods at a fixed cur-
ent load. In this section we augment our single input extremum
eeking algorithms to incorporate changes in the current load dur-
ng and after optimization. Using the fuel cell simulation model,

e propose to interrupt the optimization routine when there is
significant current load change. If the change in current load is

reater than a predetermined threshold, we scale the air flow rate
y an amount proportional to the change in current load and con-
inue the optimization algorithm with this reset value as the initial
ondition:

(k + 1) = u(k)
(

I(k)
I(k − 1)

)
(5)

(k) = voltage to the compressor (V); I(k) = current load (A).
The particular form of the reset rule (5) is because, if current

oad changes, then the oxygen usage changes proportionally.
In simulations we chose a threshold of 3% and interrupted the

lgorithm whenever the current load changed by more than 3%.
ig. 14 displays simulations results where the current load changes
rom 140 to 200 A during an optimization routine.

. Tapering the step changes in the input
Both experimental and simulation data show that the net power
as an initial inverse response to a step increase in the air flow rate.
his is because, when the voltage to the compressor is increased,
he compressor reacts faster than the stack, thus causing an initial
Fig. 14. Simulation with load change during optimization.

drop in net power until the stack voltage increases. To reduce this
inverse response, we employ ramp inputs rather than step changes
in the air flow rate. Fig. 15 shows the stack voltage and net power
responses after an open loop step change in the voltage (110–120 V)
to the compressor and ramp inputs with slopes of 10, 20 and 40.
We note that the magnitude of the net power inverse response
indeed decreases as the slope of the ramp decreases, but settling
time increases.

We modified our refined steepest algorithm to ramp to the
desired new compressor input voltage within 0.25 s. Fig. 16 shows a
comparison of the ramp and step input profiles during optimization.
Both have similar behavior with the exception that the magnitude
Fig. 15. Open loop simulations with various input profiles.
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ig. 16. Refined extremum seeking with step input changes vs. ramp input changes.

. Introducing penalty on the resistance

We now take into account the effect on the life of the cell when
e increase the air flow. Running at higher air flow rates and not

xternally humidifying the air will cause the ohmic resistance to
ncrease. Higher ohmic resistance means faster deterioration of the
ell. Thus, there exists a tradeoff between the immediate increase
n net power at a higher air flow rate and the lifetime of the cell.

We first demonstrate that if the air is not 100% humidified, as
he air flow rate increases so does the ohmic resistance. Fig. 17
isplays the test data for three different air humidifications. At a
urrent load of 0.4 A cm−2 the air flow rate is held constant for five
inutes while the impedance is continuously measured at a fre-
uency of 3700 Hz. The experiment with no external humidification
hows that as the air is increased at each step, the ohmic resis-
ance increases. There is a 25% increase in ohmic resistance from an
ir stoichiometry of 1.5–3.0. The ohmic resistance increases from

Fig. 17. Ohmic resistance as a function of air flow rate. In the absence of h
Sources 187 (2009) 422–430 429

0.109 to 0.136 ohm cm2. The 100% humidification shows no change
in resistance and the 50% humidification shows a 2% increase in
resistance over the whole range of air flows. The test is repeated for
operating points of 0.7 and 0.1 A cm−2. The results for the higher
flow conditions (0.7 A cm−2) are very similar to those in Fig. 17.
However, for the low air flow conditions (0.1 A cm−2), the overall
change in ohmic resistance as non-humidified air flow increases
is 46%. Ohmic resistance is a function of membrane thickness and
conductivity [14]. The conductivity is a function of membrane water
content and temperature. The temperature is fixed and at 100%
humidification the membrane water content remains fixed, there-
fore resistance does not vary with air flow rates.

Many fuel cell systems do not run at 100% humidified inlet air.
Systems may use internal humidification, or if using an external
humidifier, choose not to run at 100% because of concerns about
flooding. This leads to the conclusion that the air flow rate has
an effect on the membrane water content and membrane water
content plays a key role in the length of life.

To create a relationship between resistance and life of a cell we
used the experimental results of the number of hours of cell life at
different relative humidity conditions given in [15]. We then corre-
late this with ohmic resistance values at the same relative humidity
conditions. Using the Simulink fuel cell model we ran three differ-
ent operating conditions: 100% relative humidity anode with 70%
cathode, 100% anode with 0% cathode, and 0% anode and 0% cath-
ode. The ohmic resistances were 0.0377, 0.0712 and 0.1328 ohm cm2

respectively. Simulations are done at a current load of 0.54 A cm−2,
an air flow rate of 2.5 stoichiometry and a fuel cell temperature
of 80 ◦C. A mathematical equation is derived to correlate cell life
(hours) as a function of ohmic resistance (ohm cm2). A power law
is determined to best correlate the data:

cell life = 4.527R−2.02. (6)

Using the Simulink fuel cell model with a fuel cell tempera-
ture of 80 ◦C and both the anode and cathode 100% humidified, the
ohmic resistance for all current loads is approximately R0 = 0.037.
Any resistance larger than R0 creates a greater loss to the life of the

cell and is incorporated as a penalty function in our optimization
algorithm. Thus, when R > R0, we modify the objective function to
be

netpower − �{4.527(R−2.02
0 − R−2.02)} (7)

umidification as air flow rate increases ohmic resistance increases.
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ig. 18. Coarse steepest ascent algorithm with penalty function (5). An increase in
he life of the cell is expected with lower air flow rates.

he parameter � in Eq. (7) has units of W h−1 and is a variable that is
o be selected by the user. It describes how many watts of immediate
et power the user is willing to sacrifice for a unit increase in the

ifetime of the cell.
Fig. 18 compares the simulations results for the coarse steepest

escent algorithm with the cathode air at 0% relative humidity and
at 0 and 0.3. With inlet air being at 0% relative humidity and

o penalty to net power for higher resistance (� = 0), the algorithm
esults in the air stoichiometry of 2.2 and a net power of 27,480 W. If
e include a penalty with � = 0.3, the optimal air flow becomes 1.9

nd net power is reduced to 27,402, which means we give up 78 W.

. Conclusions

This paper proposed extremum seeking algorithms that can be
sed to enhance performance of the fuel cell system. Our algorithms
anipulate air flow rate into the cathode to maximize the net

ower. The algorithms adapt to changes in operating parameters,
isturbances and system degradation. We demonstrate and com-

are performances of a coarse, refined, and Newton-type algorithm.
imulation results showed that all three algorithms had comparable
ccuracy. However, the speed of convergence was much faster for
he coarse steepest ascent. The refined and Newton-type algorithms
se the central difference formula to estimate the gradient, and,

[

[

[
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thus require additional time to dither the air flow. The simple and
refined algorithms were tested using an 8 cell stack module. Exper-
imental data showed noisy stack voltage measurements (Fig. 6)
which affected the accuracy of the extremum seeking algorithms.
This problem was alleviated by adding an averaging filter to the
voltage measurement. Several modifications of the algorithms were
then proposed to include a second input variable (regulating valve
opening for the air outlet manifold), to reset the initial conditions
of the algorithm in response to large changes in the current load,
and to taper the step changes employed in the algorithm so that
negative spikes in the power are mitigated. Finally, we proposed
a penalty to the objective function that accounts for high air flow
rates that may degrade the membrane at a faster rate. The designer
decides how many watts of immediate net power she is willing to
sacrifice for a unit increase in the lifetime of the cell.
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